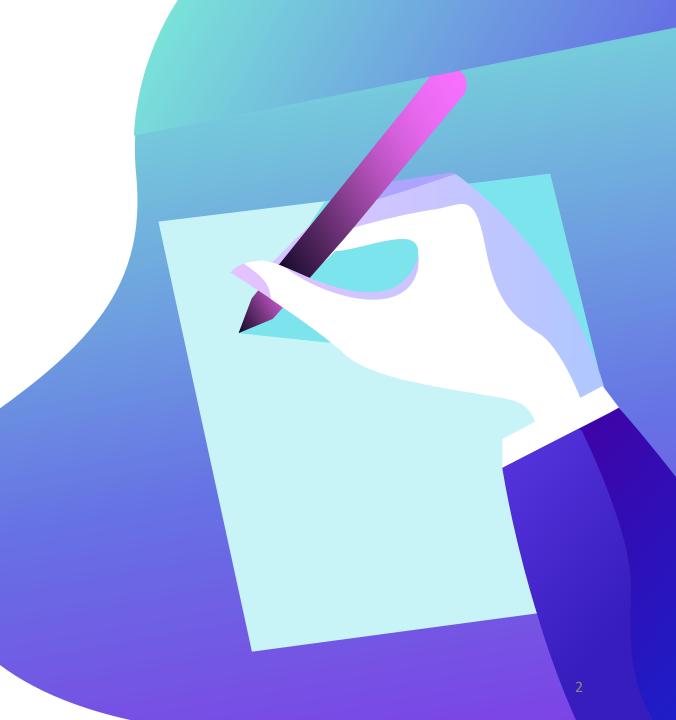
MUTUAL RECOGNITION FOR CROSS-BORDER ELECTRONIC DOCUMENT MANAGEMENT

Tahseen Ahmad Khan takhan@meity.gov.in

TABLE OF CONTENTS

Background: Why Mutual Recognition is important?

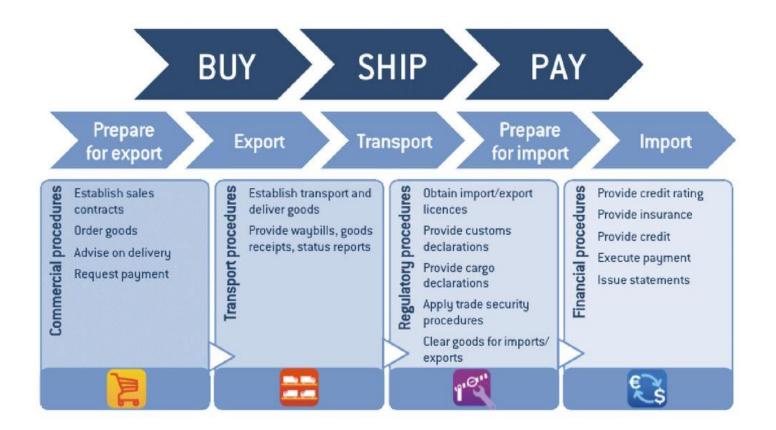

Electronic Data and its inherent nature

Scope of mutual recognition, need to go beyond trade related data

Preliminary research and findings

Experiences from India

Conclusion


Background: Why Mutual Recognition is important?

- Electronic exchange of data across borders requires a certain degree of trust
- Legislative frameworks exist within national jurisdictions that recognize electronic data and their exchange
- In a cross border electronic data exchange
 - Establishing confidence and "substantial equivalent level of reliability" can be difficult because of differing local legislation
 - Electronic data exchange, storage and retention standards may differ and may have evolved based on local regulatons
 - Usage of technologies such as cloud computing results in data residing in multiple jurisdictions
 - Emerging technologies such as Blockchain, IoT are adding new dimensions resulting in increased types and source of data

To address these issues, a mutual recognition mechanism is required to create trusted trans-boundary electronic interaction and enable cross border exchange of electronic data

Electronic Data and its inherent nature

 The Buy Ship Pay process developed by UN/CEFACT indicates that a number of documents and data are exchanged during a trade related process

Electronic Data and its inherent nature

- As electronic systems have matured, over time, standards have also evolved which define how electronic data can be exchanged, for example: Electronic Data Interchange
- Reliable exchange and acceptance of electronic data needs to tackle a number of issues
 - Data could be in structured or unstructured form
 - Interoperability and compatibility issues arising out of different data standards, for example: XML, PDF etc and different technologies used
 - Ability to ascertain integrity of data where required
 - Need for tackling high volume and velocity of data as in the case of big data use cases such as IoT
 - Usage of legacy systems and need for migration of data
 - Differing language environments

Given this context, electronic data poses significant challenges in enabling digital trust in cross border exchange of trade related data and documents

Scope of Mutual Recognition

- The scope of mutual recognition mechanism should cover aspects and areas that allow establishment of "substantial equivalent level of reliability"
- This may have to go beyond just trade related data and take into account
 - Technical standards used in data exchange (for ex: ability to ascertain data integrity)
 - Entities owning, certifying and/or transmitting data,
 - Establishment of level of confidence (identification, authentication methods) through a trusted environment
 - Role that accreditation bodies could play in monitoring the trusted environment

Preliminary Research and Findings

- A number of bi-lateral and multi-lateral institutional and inter-governmental arrangements exist for cross-border mutual recognition
- A closer analysis helps us make the following general observations
 - The concept of trusted trans-boundary legally significant electronic interactions is still fairly new
 - While most countries have put in place national legislation recognizing electronic documents or signatures, the scope is domestic or regional or limited to highly integrated union of states
 - Instruments are generic and not legally binding from the perspective of cross-border trade
 - Awareness levels are generally low across multiple sectors and their regulators making crosssectoral adoption challenging
 - There is no concrete action at an implementation level to facilitate paperless cross-border electronic trade
 - Initiatives at the level of Association of Southeast Asian Nations(ASEAN), Eurasian Economic Union(EEU), European Union (EU), UN/ESCAP and UN/CEFACT are worth mentioning.

- In India, the journey started 18 years back
- Key milestones achieved
 - 2000 IT Act was passed based on UNCITRAL model law with following provisions introduced
 - Legal recognition to electronic records
 - Authentication of electronic records
 - Manner in which authentication can be satisfied (for ex: through the use of electronic signatures)
 - Procedures for licensing Certifying
 Authorities that can issue digital certificates
 - References with Indian Penal Code, Indian Evidence Act, 1872, Bankers Book Evidence Act, 1891, Reserve Bank of India Act, 1934
 - 2008 Key amendments made including distinction between electronic signature and digital signature

PKI Hierarchy

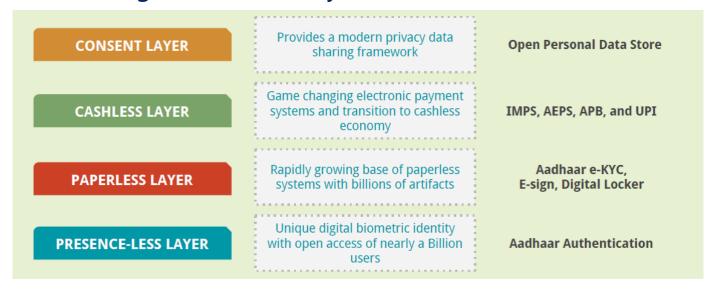
CCA India (Root CA)

Government body establishing accreditation procedures, identity verification guidelines, certificate practice statements

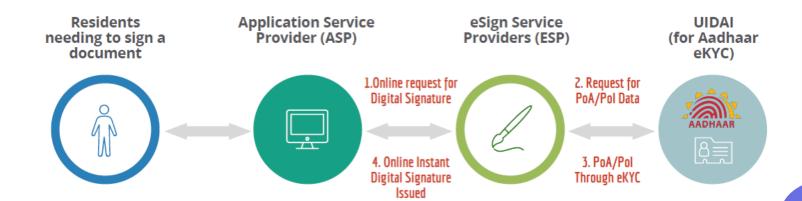
Issuing/Licensed CA

Builds and Operates necessary infrastructure to issue Digital Signature Certificates

Revocation List


Relying Parties

Subscribers


- Key milestones achieved (contd..)
 - 2012 Powers given to Controller of Certifying Authorities, Ministry of Information Technology to sign mutual recognition agreements with other countries
 - 2013 First such mutual recognition agreement signed with South Korea
 - 2014 Central Bank (Reserve Bank of India) and published a comprehensive report outlining need for enhancing cyber security measures in Banking
 - Electronic signature was recommended to be provided as an option to customers for securely logging into internet banking or for fund transfers
 - Other cyber security measures include use of Two Factor Authentication
 - 2014 Tax Administration and others adopted similar approach

- Key milestones achieved (contd..)
 - 2015 Launch of AADHAAR enabled electronic Signatures
 - AADHAAR is India's Digital ID now rolled out to 1.3bn residents
 - Electronic signatures use OTP/Biometric authentication and leverage KYC data available with Govt of India to create dynamic one time signatures that are legally valid
 - Helped bring cost of adoption to **USD 10 cents** per transaction and create large scale adoption
 - Use cases include Account Opening in Banks, Insurance, Capital Markets, availing eGovernance services, employee onboarding etc

 Creation of India Stack – a technology stack based on Open API's and Layered Innovation to enable electronic KYC, Signatures and Payments based on user consent

AADHAAR eSign – Digital Id based electronic signatures

- Key milestones achieved (contd..)
 - 2024 Huge success of Digital India program
 - Over 21bn cumulative electronic KYC's
 - Over 250mn electronic signatures yearly
 - Over 400mn electronic payments daily

Conclusion

- The following will need to be considered in enabling mutual recognition
 - Creation of a strategy which can help arrive at a legal, technical and operational umbrella framework. This need to be progressively created at national, sub-regional, regional and global levels.
 - Domain and country specific legislation, conforming to international standards, supporting cross border paperless trade.
 - Use of interoperable open standards in technology frameworks for Identity, Authentication etc.
 - Capacity building for implementation

Thank You

Tahseen Ahmad Khan takhan@meity.gov.in